Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiao-Lin Zhang, Ren-Yun Kuang, Qian-Yong Cao* and Lai-Tao Luo

Department of Chemistry, Nanchang University, Nanchang 330047, People's Republic of China

Correspondence e-mail: cqyong@ncu.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$
R factor $=0.079$
$w R$ factor $=0.192$
Data-to-parameter ratio $=15.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
[2-(Diphenylphosphino)phenyliminomethyl]ferrocene

The title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NP}\right)\right]$, a new Schiff base containing a ferrocenyl (Fc) group, has been synthesized and characterized structurally. The compound is a trans isomer with the $\mathrm{C}_{\mathrm{Fc}}-\mathrm{C}-\mathrm{N}-\mathrm{C}$ linkage almost planar.

Comment

Ferrocene and its derivatives have attracted much attention for their potential applications as molecular sensors, as magnetic and optical materials, and in homogeneous catalysis (Togni \& Hayashi, 1995; Long, 1995; Beer et al., 1999). Schiff bases derived from ferrocenecarbaldehyde and their metal complexes are quite attractive because of their rather simple syntheses. Several studies on this class of ferrocene-containing molecules have been reported recently (Wu et al., 2001; López et al., 2005). We have synthesized such a compound, (I), and present its structure here.

(I)

The molecular structure of (I) is in a trans configuration of the benzene ring and the cyclopentadienyl (Cp) ring about the $\mathrm{N}=\mathrm{C} 19$ bond; the dihedral angle between the planes C19-C24 and $\mathrm{N} / \mathrm{C} 13-\mathrm{C} 18$ is $4.47(5)^{\circ}$. In the Fc group, the $\mathrm{Fe}-\mathrm{C}$ bond lengths (Table 1) are within the normal range (Huo et al., 1995). The $\mathrm{Fe} \cdots \mathrm{Cg} 1$ and $\mathrm{Fe} \cdots \mathrm{Cg} 2$ distances are 1.637 and $1.645 \AA$, respectively, and the $C g 1 \cdots \mathrm{Fe} \cdots C g 2$ angle is 177.5°, where $C g 1$ and $C g 2$ are the centroids of the substituted and unsubstituted Cp rings, respectively. The two Cp rings are almost eclipsed, with a dihedral angle of $2.37(5)^{\circ}$, and the largest torsion angle $\mathrm{C} 21 \cdots C g 1 \cdots C g 2 \cdots \mathrm{C} 27$ is 2.9°. In the triphenylphosphine group, the P atom adopts a slightly distorted pyramidal geometry.

Experimental

The raw material 2-(diphenylphosphino)aniline was prepared by a literature method (Cooper et al., 1992), and formylferrocene was commercially obtained. Formylferrocene ($1.024 \mathrm{~g}, 4.78 \mathrm{mmol}$) was added to a solution of 2-(diphenylphosphino) aniline (1.325 g , 4.78 mmol) in benzene (50 ml). The reaction flask was connected to a

Received 27 July 2006
Accepted 31 August 2006
\qquad
condenser and a Dean-Stark apparatus. The mixture was refluxed until ca 15 ml of benzene-water azeotrope had condensed on the Dean-Stark apparatus. The reaction mixture was then concentrated on a rotary evaporator to about 10 ml . Slow evaporation of the solvent afforded the red title compound (1.833 g , yield 81%). M.p. 400-401 K. Elemental analysis calculated for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{FeNP}$: C 73.59, H 5.11, N 2.96%; found C 73.67, H $5.05, N 2.82 \%$. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of a $\mathrm{CH}_{3} \mathrm{CN}$ solution at 293 K .

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NP}\right)\right]$	$Z=8$
$M_{r}=473.31$	$D_{x}=1.353 \mathrm{Mg} \mathrm{m}^{-3}$
Orthorhombic, $P b c a$	$\mathrm{Mo} \mathrm{K} \mathrm{\alpha}$ radiation
$a=13.902(3) \AA$	$\mu=0.73 \mathrm{~mm}^{-1}$
$b=9.3370(19) \AA$	$T=293(2) \mathrm{K}$
$c=35.815(7) \AA$	Needle, red
$V=4648.9(16) \AA^{3}$	$0.40 \times 0.20 \times 0.10 \mathrm{~mm}$
Data collection	
Enraf-Nonius CAD-4	4553 independent reflections
\quad diffractometer	1939 reflections with $I>2 \sigma(I)$
$\omega / 2 \theta$ scans	$\theta_{\text {max }}=26.0^{\circ}$
Absorption correction: ψ scan	3 standard reflections
\quad (North et al.; 1968$)$	every 200 reflections
$\quad T_{\text {min }}=0.758, T_{\text {max }}=0.930$	intensity decay: none
4553 measured reflections	

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.079$
$w R\left(F^{2}\right)=0.192$
$S=0.95$
4553 reflections
289 parameters
H-atom parameters constrained

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Fe}-\mathrm{C} 21$	$2.012(7)$	$\mathrm{Fe}-\mathrm{C} 20$	$2.039(7)$
$\mathrm{Fe}-\mathrm{C} 24$	$2.021(8)$	$\mathrm{Fe}-\mathrm{C} 28$	$2.039(8)$
$\mathrm{Fe}-\mathrm{C} 22$	$2.022(7)$	$\mathrm{Fe}-\mathrm{C} 23$	$2.040(8)$
$\mathrm{Fe}-\mathrm{C} 27$	$2.033(8)$	$\mathrm{P}-\mathrm{C} 7$	$1.818(7)$
$\mathrm{Fe}-\mathrm{C} 29$	$2.033(8)$	$\mathrm{P}-\mathrm{C} 13$	$1.826(7)$
$\mathrm{Fe}-\mathrm{C} 25$	$2.035(7)$	$\mathrm{P}-\mathrm{C} 1$	$1.843(7)$
$\mathrm{Fe}-\mathrm{C} 26$	$2.035(8)$	$\mathrm{N}-\mathrm{C} 19$	$1.260(8)$
$\mathrm{C} 7-\mathrm{P}-\mathrm{C} 13$	$102.8(3)$	$\mathrm{C} 13-\mathrm{P}-\mathrm{C} 1$	$102.5(3)$
$\mathrm{C} 7-\mathrm{P}-\mathrm{C} 1$	$101.0(3)$		

All H atoms were positioned geometrically and treated as riding ($\mathrm{C}-\mathrm{H}=0.98 \AA$ for cyclopentadienyl rings and $0.93 \AA$ for other H atoms); $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
Perspective structure of compound (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level, and all H atoms have been omitted for clarity.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

This work was supported by the Bureau of Education of Jiangxi Province (2006, No. 29). We are also grateful to the Center of Analysis and Testing, Nanchang University, for financial support (Foundation No. 2006020).

References

Beer, P. D., Gale, P. A. \& Chen, G. Z. (1999). Coord. Chem. Rev. 185-186, 3-36. Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Cooper, M. K., Downes, J. M., Duckworth, P. A. \& Tiekink, E. R. (1992). Aust. J. Chem. 45, 595-609.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Huo, S. Q., Zhu, Y. \& Wu, Y. J. (1995). J. Organomet. Chem. 490, 243-247.
Long, N. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 21-38.
López, C., Pérez, S. \& Font-Bardia, M. (2005). J. Organomet. Chem. 690, 228243.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Togni, A. \& Hayashi, T. (1995). Ferrocenes - Homogeneous Catalysis, Organic Synthesis, Materials Science. Weinheim: VCH.
Wu, Y., Huo, S., Gong, J., Cui, X., Ding, L., Ding, K., Du, C., Liu, Y. \& Song, M. (2001). J. Organomet. Chem. 637-639, 27-46.

[^0]: © 2006 International Union of Crystallography All rights reserved

